
Drop the file MPRGUI_6.0.py on the Launcher or launch from the terminal. You
will first see a terminal window and then the graphical interface will come up. It
should look something like this:

MPR GUI Release 6
by: Daniel M. Dobkin, Enigmatics

MPR GUI is a user interface for WJ Communications’ MPR PC-card RFID read-
ers. This software and documentation is released open-source; you may use
and modify the software and documentation as you find appropriate, so long as
the attribution statement remains in the code, and the Enigmatics logo remains
in the documents.

Enigmatics makes no warranty regarding the suitability of this software for any
specific application.

I would like to thank the people at WJ Communications for their support and
assistance in writing and testing the software.

Part 1: User’s Guide

To run the software you need to have Python resident on your machine. Mac
OS X 10.2 or above comes with Python 2.3 resident, though the MacPython
development environment is a nice addition. Linux or Windows machines may
need to add Python. I’m running version 2.3 and haven’t tested 2.4. You also
need pyserial (to talk to the serial port device) and Tkinter to generate the user
interface. Both of these are widely available Python distributions and may
already be resident on your machine.

To run the code, make sure all the modules (files ending in .py) are in one folder,
or in folders listed in your Python path variable. You can’t run MPRGUI from
inside an integrated development environment (IDE), as the IDE and the GUI will
argue about ownership of the graphical interface. You can run the program from
the terminal command line, or get something like Python Launcher for drag-and-
drop:

The first thing you need to do is to press either the PC card or USB serial button,
depending on how your MPR card is installed. [Right now these buttons are
configured for a Mac PC-card slot and a Keyspan serial USB adaptor. To
change the configuration you need to look in the dev library, usually named /dev,

MPRGUI 6.0 manual page 1

Press the INVENTORY button for either EPCglobal class 0 or class 1 tags to
read them; the MPR will then continue to read tags until you press the STOP but-
ton. You can adjust the transmit power using the slider, and the antenna selec-
tion using the radio buttons; these settings are only registered at the start of an
inventory, and ignored while the reader is reading. If you chose ALTERNATE the
reader will switch between antenna A and antenna B in each inventory. (An
MPR5000 has only antenna A and B or alternate don’t do anything.)

If ‘accumulate IDs’ is cleared, the list of tags read after every 10 inventories will
be displayed, and rewritten for the next burst of 10 inventories. If ‘accumulate
IDs’ is checked, the list will accumulate each new tag for as long as the inventory
sequence continues. If the list grows longer than the text field can display you
can click within the text and drag the cursor down to see additional tag IDs.

If inventory log ON is checked, the interface will report the number of tags read in
each inventory in a scrollable window. If the MPR reader sends error messages
(e.g. ‘antenna fault’ if you forgot to connect the antenna), these will appear along
with the sequential number of the bad inventory in the error log window.

Class 0 and class 1 handle multiple-tag reading differently. The MPRGUI
defaults to using ID2 (the tag ID) to singulate class 0 tags, and SCROLLALL to
read class 1 tags. SCROLLALL will work poorly if more than 3 or 4 tags are in
the field; in this case, you should check ‘cl1 anti-collision’ before starting an
inventory. This will run a proprietary version of the PING algorithm, which is slow
but can read up to > 30 tags in a single inventory.

MPRGUI 6.0 manual page 2

TAG STRENGTH makes a series of inventories starting at the highest transmit
power allowed in your system and decreasing until the minimum is reached or no
tags are read. The results are reported in the relevant text field. This iis a very
quick way to evaluate whether a tag is reading well or marginally, useful for tags
on nasty surfaces like boxes with metallic or aqueous objects inside.

COPY CLASS 0 and COPY CLASS 1 buttons place the contents of the cited tag
ID field onto the clipboard, for quick pasting into a word processor, spreadsheet,
or other program. All the text fields can be selected and copied manually using
your mouse.

Pressing the LOG OFF button will turn the Log on; every packet exchange is then
recorded in the default output device, typically the terminal window.

MPRGUI 6.0 manual page 3

Pressing the Gen 2 button brings up the Gen 2 interface window.

The interface is similar to the Gen 1 interface but with some new features. Ses-
sion and Target are described in the Gen 2 standard; when the target is set to Alt,
Alm inventories are taken with e.g. target A, and then Altm inventories are taken
with target B, where Altm is set by the slider below the target selection buttons.
Qstart is the initial value of the parameter Q that determines inventory size.

Inventory reports the length of the EPC, the PC (protocol control) word, and the
EPC, as well as the number of times each EPC is read (if accumulate is checked).
On the right side we get the summary values of unique tag reads and total reads
and attempts. If the inventory log is checked, you also get a run-by-run log: tags
read, slots used, EPC CRC and response CRC errors, collisions, rounds, and the
running log of unique tags read. Finally, an error log reports packet errors (e.g.
antenna faults) when they occur.

self.mycontainer1

self.topframe

self.bottomframe

self.midframe

self.getreaderbutton

self.class0frame
self.class0button
self.copyclass0button

self.class1frame

self.class1button

self.copyclass1button

self.class1verifybutton
self.class1tagstrengthbutton

self.chkbuttonframe

self.stopckbutton
self.accumulate
self.class1type

self.powerslider

self.readerinfo

self.cl0listlabel self.blanklabel self.cl1listlabel

self.cl0list

self.cl1list

self.dblbottomframe

self.readlabelframeself.totaltagslabel
self.totalreads

self.uniquetagslabel
self.uniquereads

self.totalreadattempts

self.totalreadslabel

self.logframe

self.logdisplay

self.enigmaticlabel

Part 2: Programmer’s Guide

MPR GUI is written in Python 2.3, and works on my Mac under OS 10.3. Since
this was my first (!) Python project the structure is VERY simple and not very
elegant; only one class definition, for the user interface, is present. The code is
divided amongst several modules, generally serving the functions of calculating
CRCs, assembling commands, massaging packets, talking with the reader, and
providing the user interface.

The interface uses Tkinter, which is reputed to be reasonably cross-platform. In
Tkinter, the root window contains frames, and the frames contain widgets such
as buttons, sliders, and text fields. Thus the MPRGUI class is a long list of these
objects. The diagram below depicts roughly how the various widgets map into
the user interface you see.

self.antenna_select_frame

self.antenna_label
self.antennaAbutton
self.antennaBbutton
self.antennaBOTHbutton

self.loglabelframe

self.errordisplay

MPRGUI 6.0 manual page 4

string
SOF

node

packet length

data

CRC MSB

CRC LSB

0x01

0x00

varies

varies

CRC MSB

CRC LSB

reply_chunk

reply_length_list

reply_length

string_to_bytes

Get_next_packet

reply

string_to_bytes reply_list byte list

validate_received_packet(,)

string

byte list

byte

reply

<empty string>

print ‘bad packet’

RETURN string

OK

BAD

if wait > 1 second timeout

if wait > 1 second timeout

if timeout print ‘no good packet’
and return empty string

SOF

node

packet length

status

number of IDs

tag ID 1

...

tag ID n

CRC MSB

CRC LSB

0x01

0x00

varies

0x01

1 byte

8 or 12 bytes

8-12 bytes

CRC MSB

CRC LSB

Packet length and CRC exclude SOF byte

SOF

node

packet length

status

total IDs

under-run errors

CRC errors

CRC MSB

CRC LSB

0x01

0x00

varies

0x00

2 bytes

2 bytes

2 bytes

CRC MSB

CRC LSB

Intermediate packets End of reply packet
As described in the MPR API, the reader
never sends a packet except in response to a
command. The responsed packets are either
intermediate packets or final packets, as
shown at right.

The core interactions with the reader happen
in Get_next_packet, a routine in the module
reader_functions. Bits don’t appear instantly
at the serial port, so you can’t just read from
the serial buffer as soon as you get done
sending a command; instead, you need to
wait until the serial port reports bytes are
present. Further, you can’t read a packet
until you know how long it is since there is no
delimiter.

Therefore, Get_next_packet reads the packet in two steps; first it waits until 3 bytes are
available, so the length of the remainder of the packet can be determined. Then it reads
the rest. When the packet has been read up from the serial port as a string, the contents
are converted to a byte list and sent along with the length information to
validate_received_packet, which checks that the packet CRC is okay. (A finite number of
bad CRC’s are received, even though this is a wired connection -- I don’t know why.)

The remainder of this document provides a quick discussion of the various modules and
routines contained therein.

MPRGUI 6.0 manual page 5

MPRGUI_4.0.py

__init__:

defines the various TKinter frames and variables, handlers, etc.
note that we execute a GetReaderInfo command to get the model type
so we can set the power slider

then defines the handlers:

getrdr calls GetReaderInfo and puts the result in the text display widget

copyclass0 copy all the text in the Class 0 text widget

copyclass1 copy all the text in the Class 1 text widget

class0inventory calls inventory_until_stop with EPCclass=0;
reads the accumulate and antenna buttons first

class1inventory calls inventory_until_stop with EPCclass=1;
reads the accumulate and antenna buttons first

tagstrength runs GetReaderInfo to get the reader model (would be nice if we had global
variables!); uses the result to set the power range. Then rather ugly code in
that everything is done here, no functions:

-> get antenna request status, handle ALTERNATE (disallowed)
-> repeat inventory until no tags are read

-> run 10 inventory cycles (direct call to GetClassxInventory)
-> clean up ID string format (should be a function!)
-> format output with power and total reads
-> step power down

-> if we reach min power set totaltagsread=0 to stop
-> clear the text display widget
-> write the output string into it

inventory_until_stop arguments: EPCclass, accumulate, type, antenna_index, inventory_log
-> initialize
-> if log is ON clear log display widget
-> clear error display widget
-> while NOT stop button:

-> initialize the id list if NOT accumulate
-> update power and antenna status
-> run 10 inventory cycles:

-> call GetClass[0/1]Inventory as appropriate
-> increment inventory, alternate antenna if needed
-> append to log display if log is ON
-> if the packet is 1 byte long it’s an error, parse & append
-> else append new IDs to the list

-> ring the bell if there are new tags or tags are lost
-> clear the relevant display widget
-> clean up the list for display, display it in the widget
-> display the unique reads and total reads
-> check the STOP button status, reset and ring 3x if STOP

-> return the total number of tags read
class1verify call VERIFY ten times, print the results

-> initialize
-> call GetClass1verify ten times, appending any tags to the tagidlist
-> clear the display widget, clean up the strings for printing
-> write the list itself, also read attempts, total tags read

parse_error_to_log argument: error_code (a byte); returns a corresponding text message

BODY:

get reader info to flush out bad packets
set GUI instance = MPRGUI(root)
run the main loop

class MPRGUI:

class1tagstrength calls tagstrength with EPCclass=1;

class0tagstrength calls tagstrength with EPCclass=0;

PCcardpot calls Set_serial_port with PCcard, then gets model from readerinfo

USBport calls Set_serial_port with USB, then gets model from readerinfo

MPRGUI 6.0 manual page 6

Get_next_packet -> initialize
-> set maximum wait = 3 seconds
-> loop until either we received 3 characters OR timeout

normal exit:
-> read the first 3 bytes (byte 3=packet length)
-> loop again until either rest of bytes are received OR timeout

normal exit:
-> read the buffer, convert to bytes
-> Validate_Received_Packet

if OK, return the last (n-3) bytes of the packet
if bad, print (to terminal) and return the string ‘NULL’

timout: print (to terminal), return ‘NULL’
timeout: print (to terminal), return ‘NULL’

GetReaderInfo Call Assemble_GetReaderInfo to make a command packet
Write the packet
Call Get_next_packet
if the reply > 55 bytes then parse it and make a human-readable string

else the string is ‘no info packet’ and the model is ‘NULL’
return the reply string

Write_64bit_Class1EPC describe later

GetClass0Inventory arguments: power, antenna

-> call Assemble_Class0Inventory with default values for singulation type
-> write the command
-> initialize idlist to an empty list []
-> call Get_next_packet to read the reply
-> IF the reply is more than 1 byte

-> convert to bytes and hex
-> check the first byte [actually byte 4 of the reader packet] = status

IF 0xFF then idlist = the error code
ELSE call Strip_IDs_from_packet to make the real ID list

if there are more packets:
Get_next_packet, convert, strip IDs and append to idlist

flush the input buffer
return the idlist (so if the reply was 1 byte or less, idlist is an empty list)

GetClass1Inventory arguments: power, type, antenna

Pretty much the same as GetClass0Inventory except for the type spec

GetClass1verify arguments: antenna, power
Call Assemble_Class1verify, send the command
Call Get_next_packet to read the response
-> IF the reply is more than 1 byte

-> convert to bytes and hex
-> check the first byte [actually byte 4 of the reader packet] = status

IF 0xFF then idlist = the error code
ELSE call Strip_IDs_from_packet to make the real ID list

if there are more packets:
Get_next_packet, convert, strip IDs and append to idlist

flush the input buffer
return the idlist (so if the reply was 1 byte or less, idlist is an empty list)

followed by a bunch of text-driven interface functions no longer used...

reader_functions.py

import serial, CRCs, packet_crunch, assemble_packets, time
set a default value of the serial port variable ser (so ser is effectively global); also define model as
‘NULL’ to create another global
Set_serial_port argument: port

This just sets the serial variable ser to the right device name for either the PC
card emulated port or the Keyspan USB port. It is called from MPRGUI when the
GUI window comes up and the user presses either the PCcard or USB button.

Start_card_get_model Ask for the reader info until the card gives a valid packet (can take a few tries if
the card was just loaded into the slot); then extract the model (MPR5000,6000, or
7000)

Append_new_IDs Arguments: idout, newidlength, tagidlist
For each id in idout, check if already in tagidlist. If not, append to both tagidlist
and newidlist (which has only the new ones); return tuple (newidlist,tagidlist)

Clean_up_list Argument: idlist
format a byte list as a hex string without the 0x’s; return cleaned_up_list

MPRGUI 6.0 manual page 7

assemble_packets.py

import CRCs, packet_crunch
Assemble_GetReaderInfo same packet always, pre-calculated CRC

Assemble_Class0Inventory arguments: antenna, power, singulation, filter_bits, filter
NOTE: filter capability is not supported!!
assemble packet, convert to bytes and calculate CRC on [packet-SOF]
return packet

Assemble_Class1Inventory arguments: antenna, power, filter_bits, filter, type
Type=0 is no anti-collision, type=1 is anti-collision (quick scroll not supported)
NO check for valid power range -- should add? or do check in calling routine?
NOTE: filter capability is not supported!!
assemble packet, convert to bytes and calaculate CRC on [packet-SOF]
return packet

Assemble_Class1write arguments: antenna, power, pointer, databyte1, databyte2
not yet tested

Assemble_Class1erase arguments: antenna, power
not yet tested

Assemble_Class1verify arguments: antenna, power
NO FILTER! note CRC doesn’t agree, need to fix.

MPRGUI 6.0 manual page 8

packet_crunch.py

import CRCs, serial
Strip_IDs_from_packet argument: inputlist

assumes inputlist is a packet. The first byte is the Status byte. If status is 00
(error) we return an empty list. If Status is 01, read the next byte (# of tags), build
a list of IDs (nested) by extracting the bytes of the tag ID based on the first two
bits. Thus assumes EPC-compliant!

Strip_longIDs_from_packet argument: inputlist

assumes inputlist is a packet. The first byte is the Status byte. If status is 00
(error) we return an empty list. If Status is 01, read the next byte (# of tags), build
a list of IDs (nested) by extracting the bytes of the tag ID based on the first two
bits. Thus assumes EPC-compliant!

In this case, we assume each ID includes the CRC in front and kill passocde at
the back, appropriate for the VERIFY command. 11/05: added error check to
skip steps if the poitner gets past the end of the received data (which can happen
as VERIFY just reads whatever it gets, doesn’t always get all of ID)

Validate_Received_Packet arguments: Inputlist, Recpacketlength

Checks the CRC of the received packet against the calculated value. Returns 1
(TRUE) if OK, 0 (FALSE) if not.

-> prepend packet length byte and the node (which is always the same)
-> strip the received CRC from the last two bytes of the packet
-> calculate the CRC
-> if received & calc are same, return 1, else 0

String_to_bytes arguments: input_string

convert a string to a tuple of bytes

Bytes_to_hex argument: inputlist
convert an input list of numbers to a list of strings showing the values as 0xNN

CRCs.py

Class1CRC arguments: inputlist, length, preload

Inputlist is a byte list length bytes long. Preload, a hexadecimal two-byte num-
ber, is the initial state of the virtual register that implements the CRC. This rou-
tine implement the class 1 CRC algorithm, which is a bit funky and not quite the
same as a ‘CCITT standard’ 16-bit CRC. The implementation uses bitwise oper-
ations on the numerical variable Reg to implement the shifts and adds.

MPR_CRC arguments: inputlist, length, preload

Inputlist is a byte list length bytes long. Preload, a hexadecimal two-byte num-
ber, is the initial state of the virtual register that implements the CRC. This rou-
tine implements the CCITT standard 16-bit CRC, which is identical to that used
by the MPR for error checking and by the EPCglobal class 0 standard for verify-
ing the tag EPC. In this case the routine is implemented by explicit emulation of
a shift register using logical operations on a list of numerical variables register[].
(Hardly elegant but appears to be quite sufficiently fast.)

MPRGUI 6.0 manual page 9

Version 6.0
Daniel M. Dobkin
Enigmatics March 28, 2006

enigmatics@batnet.com
www.enigmatic-consulting.com

Feel free to contact me with questions or
enhancements to the code. I might or
might not have the time or ability to help
with problems but it’s always nice to hear
from users.

MPRGUI 6.0 manual page 9

The Gen 2 class and modules are rather similar to Gen 1. Reader_functions_g2
implements the necessary inventory functions, and packet_crunch_g2 maps the
grammar of G2 packets into the inventory. Class MPRGen2 creates the Gen 2
interface window and implements the control functions.

